Field Effect Transistor Condenser Studio Microphone in CMS®

AKG Equipment Ltd.
182/84 Campden Hill Road
Kensington
London W. 8
Capsules

AKG's condenser microphone capsules have always been known not only for their very high acoustic properties but also for the high precision of their manufacture — a result of great technical effort.

AKG set itself the task of developing a transducer element for the CMS system which would offer essential technical improvements to be used in all CMS capsules:

a) meeting of the objectivity requirement:
 which means smooth and even frequency response as well as directional characteristics which are independent of frequency;

b) high temperature stability and resistance to aging as well as insensitivity to moisture;

c) simple mechanical construction.

The result:

a stable condenser transducer
The transducer consists of a gold-coated ceramic electrode and a specially embossed diaphragm. As the result, the fundamental resonance of the highly stable diaphragm may be placed at about 1300 Hz, the optimum value for wideband electrostatic pressure-gradient microphones. In addition, frequency response at high frequencies can be perfectly controlled in combination with a new acoustic delay line. The acoustic delay line (Fig. 2) accounts for the good directional characteristics at high frequencies. It consists — in conformity with the first mechanic-electric analogy — of two RC members, whereby one C functions also as an acoustic delay line at high frequencies.

The adjustment for maximal extinction results by variation of the condenser C3, which corresponds to the volume between diaphragm and acoustical frictional resistance.

The Ceramic Back-Plate (Counter-electrode)

is gold-coated in high vacuum, whereby the gold layer reaches from the electrode surface to the back of the electrode by way of holes. The contact is accomplished by means of a gold-coated contact ring. The diaphragm is affixed with adjustable pre-stressing, whereby the contact from the diaphragm goes directly over the capsule housing.

![Ceramic Back-Plate](image)

Fig. 1 Ceramic Back-Plate

Fig. 2 Schematic of capsule CK 1
The ceramic electrode is designed in such a way, as to provide it with especially long insulating distances. Therefore the capsule can be used under unfavorable climatic conditions and also at very close talking. Severe temperature and aging tests (−20°C to +100°C / −4°F to +212°F) did not show any changes in acoustic or electric properties (see diagrams A–D, on next page).

The Diaphragm

Through further development the embossed pattern can be transferred also to the plastic diaphragm. However it was necessary to enlarge the trough pattern to balance the different temperature coefficients of the ceramic material and the plastic foil. Varying the depth, width and height of troughs (embossed pattern, Fig. 3) or their number per surface unit and relative position to each other, almost any desired elasticity can be obtained with all stress zones disappearing and improving the evenness of the diaphragm surface, within certain limits.

Fig. 3 Circular diaphragm with embossed trough pattern $M = 100:1$
The diagrams A and B show the moisture behaviour as function of the capacitance (C) or the conductance (G). In the case of condenser capsules of conventional design the application limit is at an ambient temperature of 40° C / 104° F and 86% relative humidity, while the AKG condenser capsules are still functioning perfectly at 99%, provided that no condensation occurs.

The diagram C shows the influence of temperature for both capsules: the capsules of conventional design show a greatly different temperature characteristic, mostly subject to hysteresis.

Diagram D shows the behavior of the capsules during artificial aging. An alternating temperature sequence of −20° C / −4° F and +70° C / +158° F, every three hours, was selected. A change of the capacitance was observed each time the room temperature was being reached. This change is insignificant in the case of the AKG stable capsule, but very large in the case of capsules of conventional design.

This technique is being used in all AKG condenser capsules.
CK1

Stable AKG condenser capsule:
Integrated ceramic electrode, highly stable, aging-resistant diaphragm

Smooth frequency response within the entire transmission range between 20 \ldots 20\,000\,Hz

Directional characteristic: frequency-independent cardioid, with uniform front-to-back discrimination

180° discrimination \geq 20\,db

Functions up to 99\% relative humidity

Technical Data:
- Type: Pressure gradient receiver
- Frequency Range: 20 \ldots 20\,000\,Hz
- Directional Characteristic: frequency-independent cardioid
- Sensitivity at 1\,000\,Hz: 9\,\mu\text{V} / \mu\text{bar} \leq 9.5\,\mu\text{V} / \text{Pa}
- Unweighted Noise Level: 3.6\,\mu\text{Veff}
- Weighted Noise Level: 2.2\,\mu\text{Veff}
- Equivalent Noise Level: 21\,\text{db}
- Capsule Capacity: 27\,\text{pF}
- Weight: 20\,g; gross weight: 60\,g
- Temperature Range: \(-20^\circ\text{C} . . . +60^\circ\text{C}\)
- Humidity: at 20^\circ\text{C} . . . 99\% \text{ at } 60^\circ\text{C} . . . 95\%\)

MEASURING TECHNIQUE:
The capsule has been measured with an AKG standard measuring preamplifier with following technical data:
- No-load Amplification: 0.47
- Input Capacitance: 12\,\text{pF}
- Polarisation Voltage: 52\,\text{V}
Stable AKG condenser capsule:
Integrated ceramic electrode, highly stable, aging-resistant diaphragm
Wide transmission range of 20...20 000 Hz with presence rise for added brilliance
Directional characteristic: frequency-independent cardioid, with uniform front-to-back discrimination
180° discrimination > 20 db
Functions up to 99% relative humidity

Technical Data:
Type: Pressure gradient receiver
Frequency Range: 20...20 000 Hz
Directional Characteristic: frequency-independent cardioid
Sensitivity at 1000 Hz: 0.95 mV/µbar ± 9.5 mV/Pa
Unweighted Noise Level: 3.5 µVeff
Weighted Noise Level: 2.2 µVeff
Equivalent Noise Level: 21 dB
Capacitance: 27 pF
Weight: 20 g, gross weight: 60 g
Temperature Range: -20°C...+60°C
Humidity: at 20°C...99%, at 60°C...95%
MEASURING TECHNIQUE:
The capsule has been measured with an AKG standard measuring preamplifier with following technical data:
No-load Amplification: 0.47
Input Capacitance: 12 pF
Polarisation Voltage: 62 V
CK 5

Stable AKG condenser capsule:
Integrated ceramic electrode, highly stable, aging-resistant diaphragm

Wide transmission range from 20...20 000 Hz

Directional characteristic: frequency-independent cardioid, with uniform front-to-back discrimination

180° discrimination > 20 db

Internally suspended system

Frequency response is compensated for proximity effect characteristics

Ideal as soloist microphone: insensitive to mechanical shock and handling noise

Built-in wind- and pop-screen

Functions up to $99\%/0$ relative humidity

Technical Data:
Type: Pressure gradient receiver
Frequency Range: 20...20 000 Hz
Directional Characteristic: frequency independent cardioid
Sensitivity at 1000 Hz: 0.95 mV/µbar @ 9.5 mV/Pa
Unweighted Noise Level: 3.6 µeff
Weighted Noise Level: 2.3 µeff
Equivalent Noise Level: 22 db
Filter CCITT-C/DIN 45 405
Capsule Capacity: 27 pF
Weight: 100 g; gross weight: 200 g
Temperature Range: -20° C...$+60^\circ$ C
Humidity: at 20° C...$95%/0$ at 60° C...$85%/0$

MEASURING TECHNIQUE:
The capsule has been measured with an AKG standard measuring preamplifier with following technical data:
No-load Amplification: 0.47
Input Capacitance: 12 pF
Polarisation Voltage: 62 V
Stable condenser capsule with interference tube:
Integrated ceramic electrode, highly stable, aging-resistant diaphragm

Smooth frequency characteristic from 30...20 000 Hz
The combination of the gradient and the interference principle results in a frequency-independent directional characteristic

Narrow pick-up pattern and medium distance "reach" (in comparison with CK 1) account for clear emphasis of the desired sound sources. For extreme directive effects we suggest the use of the CK 9 or the extension tube VR 2 with a CK 1S capsule

Functions up to 99% relative humidity

Technical Data:
Type: Combination of gradient and interference receiver
Frequency Range: 30...20 000 Hz
Directional Characteristic: front only ± 45°
Sensitivity at 1000 Hz: 1,3 mV/μbar @ 15 mv/Pa
Unweighted Noise Level: 3.6 µWatt
Weighted Noise Level: 2.2 µWatt 1 Filter CCITT-C/DIN 45 405
Equivalent Noise Level: 18 dB
Capacitance: 27 pF
Weight: 75 g; gross weight: 330 g.
Temperature Range: — 20°C...+ 60°C
Humidity: at 20°C...99%, at 60°C...95%
Stable condenser capsule with interference tube:
Integrated ceramic electrode, highly stable, aging-resistant diaphragm

Smooth frequency characteristic from 30 . . . 18 000 Hz

By combining the gradient and the interference principle a frequency-independent directional characteristic results in

High directional accuracy
Clear emphasis of the desired sound sources
Undesired extraneous noise is effectively suppressed

The high concentration permits a greater working distance from the microphone

Functions up to 99% relative humidity

Technical Data:
Type: Combination of gradient and interference receiver
Frequency Range: 30 . . . 18 000 Hz
Directional Characteristic: front only ± 30°
Sensitivity at 1000 Hz: 1.1 mV/μbar @ 11 mV/Pa
Unweighted Noise Level: 3.6 μVeff
Weighted Noise Level: 2.2 μVeff
Filter CCITT-C/DIN 45 405
Equivalent Noise Level: 21 dB
Capsule Capacity: 27 pF
Weight: 460 g; gross weight: 950 g
Temperature Range: —20° C . . . +60° C
Humidity: at 20° C . . . 99%, at 60° C . . . 95%
C 451C/C 451E

Condenser microphone preamplifier in semiconductor technique
Field effect transistor (FET)
Extended long-time stability
Minimum noise
High operating reliability
Functions up to 99% relative humidity
Low power consumption
For standard phantom circuit with any operating voltage from 9 to 52 v

Available in two versions:
C 451C: for three-pin standard plug according to DIN 41 524
C 451E: for three-pin Cannon plug XLR-3-11C or equivalent

Technical Data:
Type: FET preamplifier
Frequency Range: 5 ... 30 000 Hz
Noise Level: 0.47 ± 0.5 dB
Source Impedance (20 ... 20 000 Hz): ≤ 200 ohms
Supply Voltage: 9 to 52 v (d.c.), Sensitivity is proportionally reduced within the range of 7.5 to 9 v
Current Consumption: ≤ 5.5 mA (DIN 45 590)
Unweighted Noise Level: 3.5 µVeff,
Weighted Noise Level: 2.2 µVeff,
Equivalent Noise Level: 21 dB (sensitivity 0.95 µV/µbar)
Sensitivity to Magnetic Stray Field:
at 50 Hz: 8 µV/80 mgauss
at 100 Hz: 8 µV/80 mgauss
at 1000 Hz: 80 µV/50 mgauss
Load Impedance: ≥ 500 ohms
Harmonic Distortion at 1000 Hz (UE = 200 mv): ≤ 0.5%
Weight: 74 g; gross weight: 370 g
Temperature Range: -20° C ... + 60° C
Humidity: at 20° C ... 99%, at 60° C ... 95%

Dimensions [mm.]:

Connection:

Frequency response curve:
C 451CB/C 451EB

Condenser microphone preamplifier in semiconductor technique (FET) with built-in 2-position bass attenuator 0 db, -7 db at 50 Hz (roll off starts at 75 Hz), -20 db at 50 Hz (roll off starts at 150 Hz)

Field effect transistor (FET)

Minimum noise

Functions up to 99% relative humidity

Extended long-time stability

High operating reliability

Low power consumption

For standard phantom circuit with any operating voltage from 9 to 52 v (d.c.)

Available in two versions:
C 451CB: for three-pin standard plug according to DIN 41 524
C 451EB: for three-pin Cannon plug XLR-3-11C or equivalent

Technical Data:
Type: FET preamplifier
Frequency Range: 5...30 000 Hz
No-load Amplification: 0.47 ± 0.5 db
Source Impedance (20...20 000 Hz): ≤ 200 ohms
Supply Voltage: 9 to 52 v (d.c.), Sensitivity is proportionally reduced within the range of 7.5 to 9 v.
Current Consumption: ≤ 5.5 ma (DIN 45 896)

<table>
<thead>
<tr>
<th>Linear (0 dB)</th>
<th>75 Hz, 150 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unweighted Noise Level (u.r.eff):</td>
<td>3.6</td>
</tr>
<tr>
<td>Weighted Noise Level (u.r.eff)</td>
<td>2.2 (max. 2.5)</td>
</tr>
<tr>
<td>Equivalent Noise Level</td>
<td>22 db</td>
</tr>
</tbody>
</table>

Filter CCITT-C/DIN 45 405
Sensitivity to Magnetic stray Field: at 50 Hz: 5 µw/50 mgauss
at 100 Hz: 8 µw/50 mgauss
at 1000 Hz: 80 µw/50 mgauss

Load Impedance: ≥ 500 ohms
Weight: 85 g, gross weight: 300 g
Temperature Range: -20° C...+60° C
Humidity: at 20° C...99%, at 60° C...95%

Dimensions [mm.]:

Connection:

[Diagram of circuit diagram]
C 452CB/C 452EB

Condenser microphone preamplifier in semiconductor technique (FET) with built-in 2-position bass attenuator 0 dB, -7 dB at 50 Hz (roll off starts at 75 Hz), -20 dB at 50 Hz (roll off starts at 150 Hz)

Field effect transistor (FET)

Minimum noise

Functions up to 99% relative humidity

Extended long-time stability

High operating reliability

Low power consumption

For phantom circuit with an operating voltage of 48 v only (DIN 45 596)

Available in two versions:
C 452CB: for three-pin standard plug according to DIN 41 524
C 452EB: for three-pin Cannon plug XLR-3-11C or equivalent

Technical Data:
Type: FET preamplifier
Frequency Range: 5...30 000 Hz
No-load Amplification: 0.47 ± 0.5 dB
Source Impedance (20...20 000 Hz): ≤ 200 ohms
Supply Voltage: 48 v (+ 6 v, -8 v)
Current Consumption: approx. 3 ma (DIN 45 596) linear (0 db) 75 Hz, 150 Hz

Unweighted Noise Level (μvolt): 2.2 (max. 2.5)
Weighted Noise Level (μvolt*): 5.6 dB (max. 3.1)
Equivalent Noise Level (*) 22 db

Filter CCITT-C/DIN 45 405

Sensitivity to Magnetic Stray Field: at 50 Hz: 5 μV/m gauss
at 100 Hz: 5 μV/m gauss
at 1000 Hz: 10 μV/m gauss

Load Impedance: ≥ 500 ohms
Weight: 35 g; gross weight: 360 g.
Temperature Range: -20° C...+60° C
Humidity: at 20° C...99%, at 60° C...95%

Dimensions [mm.]:

Connection:

Frequency response curve:
Other CMS-microphones
C 414C comb/C 414E comb

Condenser microphone with 4 directional characteristics, condenser microphone preamplifier of semi-conductor design and capsule with a double-diaphragm system in one case

Switchable directional characteristic at uniform sensitivity:
Cardioid, Omni-directional, Figure-of-eight, Hyper-cardioid can be selected directly at the microphone

Built-in attenuation switch for a pre-attenuation of -10 db over the entire frequency range
The FET preamplifier offers:
High long-time stability
Minimum noise
High reliability
Functioning at relative humidity of up to 90%
Low current consumption
For standard phantom circuit with operating voltage of 9–52 v

The large-surface diaphragms ② consist of gold vapor-plated mylar foil®. Great compactness and sturdiness of the system despite high electro-acoustic sensitivity as well as the choice of four different directional characteristics ③ (Cardioid, Omni-directional, Figure-of-eight, Hypercardioid — individually measured frequency curves come with the unit) are the advantages of this transducer design.
A pre-attenuation of -10 db within the entire frequency range can be selected by means of a built-in attenuation switch ④.
The TV-grey metal base ⑤ eliminates disturbing reflection of light. The microphone C 414 will be delivered in a stylish case.
The microphone's base has the 6-pole connector CANNON RWK-6-31 SL spez. ⑥ for the connection with the microphone stand adapter ⑦ (Mating plug CANNON RWK-6-22C-1/4").
The microphone cable is 20 m. long with one end permanently connected to the stand adapter.
The other end — for the direct connection to phantom inputs or AKG CMS power supply units is provided either with a 3-pole DIN plug (cable designation MK 18/20) or with a 3-pole CANNON plug (cable designation MK 17/20).
The elastic rubber joint ⑧ as well as the electric insulation of the microphone from stand or suspension dampens shocks and impacts.

Circuit diagram:
Miniature Electret Condenser Lavalier Capsule with integrated FET-preamplifier
Meets the most stringent studio requirement for inconspicuous use (14.5 x 22 mm. only)
Omni-directional characteristics
Shock mounted, minimizing handling, clothing and cable rubbing noises
Equipped with rotary support clip and 7 m. long, 2-pole screened flexible grey cable terminating in screw-cap for connection to SE 5E or SE 5C
The CE 10 capsule operates in conjunction with the feeding unit SE 5E or SE 5C (battery box for 5.6 v Mallory PX 23 and circuitry for universal-phantom-powering)
There are two basic types of powering
Via the 5.6 v battery-cell (ON/OFF-switch just for battery) or externally via the universal-phantom-powering with operating voltages within the range of 9—52 v irrespective of the switch-position

Technical Data:
Type: Electret pressure receiver with FET preamplifier integrated circuit
Frequency Response: 20 . . . 16 000 Hz
Directional Polar Response: omni-directional
Sensitivity at 1000 Hz: 0.25 mV/bar @ 2.5 mV/Pa
Impedance (within the range of 30 . . . 10 000 Hz): 200 ohms ± 15%
Min. Actual Load Impedance: 500 ohms
Equivalent Noise Level: 28 db SPL (at a sensitivity of 0.25 mV/bar)
(Filter G05T-G/DIN 43 490)
Weight:
Microphone only: 3 grams
Microphone with cable and screw cap: 60 grams
Temperature Range: — 10° C . . . + 70° C
Humidity: at 20° C . . . 99%, at 60° C . . . 95% (max.)

Frequency response curve:

Dimensions [mm.]:

Connection:

(adapter for SE5)
Attention: For No.1 cable lengths of over 65 ft. the Heater Voltage requires adjustment as explained in the "Operating Instructions".